THE NEED FOR RELIABLE GAS EMISSION MEASUREMENTS IN THE AGRICULTURAL SECTOR

CONTENT OF PRESENTATION

Focus: Emissions from manure management – NH₃, GHG (VOC and H₂S)

- From global to local trends and regulatory incentives
- Source categories of importance
- Challenges in agricultural emission measurements
- Requirements for measurement methods and equipment (protocols)

GLOBAL/EU TRENDS IN AGRO-EMISSIONS

• EU: Despite emission reduction targets, agricultural emissions are stagnating

- Global demand for animal food is projected to increase (FAO)
- Global CH₄ emission from meat production will follow (FAO)

CH_4 emissions from animal food products (FAO):

LOCAL TRENDS IN EMISSIONS (DK)

Data from DK national inventory

AMMONIA SUMMIT AARHUS 20 MARCH 2024 PROFESSOR

ANDERS FEILBERG

EMISSION REDUCTION NEEDS/TARGETS

- NH₃ and VOC emissions are included in Gothenburg protocol
- Agricultural GHG are part of e.g. EU target of emission reduction of 55% in 2030

 Member States that meet their emission reduction commitments
 Imission reduction by up to 10 % of current levels needed
 Imission reduction between 10% and less than 30% of current levels needed

 Emission reduction between 30% and less than 50% of current levels needed
 Imission reduction between 30% and less than 50% of current levels needed

IMPORTANCE OF MANURE MANAGEMENT

- Manure management is by far the primary source of NH_3 in EU
- Manure management is the second-largest source of CH₄ in EU (after enteric CH₄)

MANURE IN INTENSIVE LIVESTOCK SYSTEMS

- Storage in-house and outdoor as liquid manure (slurry): Cattle <u>and</u> pig production
- GHG contribution dominated by CH₄ (90-95% of CO_{2eq})

10NIA SUMMIT AARHUS ANDERS FEILBERG 20 MARCH 2024 PROFESSOR

SOLID MANURE CANNOT BE NEGLECTED

- Sources of CH₄ from manure management in Danish livestock production
- Data is extremely scarce, measurements are challenging
- In other countries, solid manure could have a bigger contribution

AMMONIA SUMMIT AARHUS | ANDERS FEILBERG 20 MARCH 2024 | PROFESSOR

REGULATION OF EMISSIONS IN DK

- Primary target towards 2030 : GHG emissions! But more data is needed!
 - Less attention on NH₃ gas emission (N leaching and runoff is also high on the agenda)
- Current political negotiations concerning a GHG tax:
 - Suggestion: up to (!) 750 DKK (~100 Euro) per ton CO_{2eq}
 - Requires detailed quantification of emissions at a farm level.
 - Incl all sources, mitigation strategies, feed variability etc.
- Farm level emission accounting does not exist today (for GHG)
 - It cannot be based on measurements alone
 → models are needed, e.g. ABM

THE ROLE OF MEASUREMENTS...

- Reliable measurements are needed for:
 - Model development
 - Model validation and calibration
 - Development of technologies
 - Reference emission data for all important categories for:
 - Maintaining national emission inventories
 - Documentation of mitigation technologies and strategies
 - Checking modelled farm emissions

MEASUREMENT CHALLENGES

We need representative data which requires covering of:

- Short- and long-term temporal variations
- Spatial variability for e.g. area sources
- Farm-to-farm variability within a category
- Sources with complex geometry and natural ventilation
- Low emissions of e.g. N₂O and NH₃ = low ΔC

TEMPORAL VARIATION (SLURRY TANKS)

Lemes et al., 2022 AS&T

AMMONIA SUMMIT AARHUS 20 MARCH 2024

FARM-TO-FARM VARIATIONS

Relative error of emission data vs number of farms (pig facilities). Hafner & Dalby unpublished.

SELECTION OF INSTRUMENTS 1

- Many gases are relevant to measure:
 - NH₃, CH₄, N₂O, CO₂...VOC, H₂S
- Sources are typically very complex
- Risk of interferences: Earlier data on agricultural emissions achieved with photoacoustic spectroscopy (PAS) using broad-range optical filters (8)
 - With laser-based CRDS interferences are negligible except for extreme cases
- Concentrations (or ΔC) from few ppb to >100 ppm

SELECTION OF INSTRUMENTS 2

- We (AU) mainly have experience with closed-path measurement equipment (CRDS)
- For NH₃, heated sampling lines + high flow are needed to achieve high time resolution
- Open path alternatives:
 - Mini-DOAS (NH₃) not commercially available

• GasFinder ($NH_3 + CH_4$) – appear to be not sufficiently sensitive at low concentrations

PROTOCOLS

- Protocols (VERA or equivalent) exist for testing abatement technology for agriculture, but only cover NH_3 and odor
- International protocols that include GHG are needed for:
 - Achieving representative reference data for regulation and national emission inventories
 - Testing of environmental technologies including GHG
- Protocols should cover:
 - Seasonal and diurnal variation
 - Source variability
 - Quality criteria for methods and instrumentation

RELEVANCE OF AGRICULTURAL NMVOC

- NMVOC contributes to tropospheric ozone formation \Rightarrow accounting needed
- Recently updated emission estimates are available for agricultural sources

Data reported to CEIP/EMEP: https://www.ceip.at/webdab-emission-database/reported-emissiondata

SIGNIFICANCE OF LIVESTOCK H₂S

Agricultural and other anthropogenic sources of sulfur in Denmark

See also: Feilberg et al (2017) Nature Communications

Agriculture total (H2S-S) Other sources Total (SO2-S) Cattle House Pig House Other Agr. Sources Other (SO2) Waste treatment Production processes Non-industrial combustion Mobile sources and machinery Manufacturing industries/constr. Energy

FUTURE RESEARCH NEEDS

- In general, a lot more data from relevant sources; systematic unbiased representative
- Measuring emissions from complex sources e.g.:
 - Farms with natural ventilation and access to outdoor yard
 - Grazing animals: low concentrations and high spatial/temporal variability
 - Includes also organic livestock farming
- Low-concentration emission sources of CH_4 and NH_3 e.g.:
 - Sources with efficient mitigation technologies (documentation)
 - Emissions from crops (NH₃) and wetlands (CH₄)
- Spatial and temporal variations in N₂O emissions from agricultural fields
 - Small concentration differences!

