Ammonia Emission Measurements After Urea Fertilization on Different Soil Types

Eszter Tóth, Márton Dencső, Marianna Magyar

Institute for Soil Sciences Centre of Agricultural Reseach HUN REN

BACKGROUND

2016: Directive (EU) 2016/2284 of the European Parliament:

national emissions of certain atmospheric pollutants must be reduced in all

European countries

- Ammonia emission must be reduced with 32% in Hungary compared to the 2005 base year
- This is one of the largest reduction obligation in the EU

BACKGROUND

Agriculture is responsible for 95% of ammonia emissions

Reduction obligations cannot be achieved without more efficient use of organic and inorganic fertilizers and accurate measurement and assessment of the impact of different factors on NH₃ emissions

INSTITUTE FOR SOIL SCIENCES

BACKGROUND

- 2004 experience with CO_2 emission measurements
- 2019 experience with NO_2 emission measurements (Picarro G2508)

- 2020: Support from the Ministry of Agriculture

 → PICARRO G2103

 COVID

 → difficulties,
- 2021: First NH_3 emission measurements with Picarro G2013

home office

FIRST STEPS – Laboratory experiments

Effect of urea fertilization on gaseous NH_3 losses in the case of:

- > incorporation
- surface spreading
- usage of urease inhibitor
- We used two different doses of urea fertilizer
- > 150 kg ha-1 (N active agent)
- > 180 kg ha-1 (N active agent)

At soil water content of pF2.3

and two different soil types

- sandy soil
- chernozem soil

	Soil water content at pF 2.3			
Sandy soil	14-16%			
Chernozem soil	39-40%			

Treatment	Active Agent Nitrogen doses [kg ha ⁻¹]	Fertilizer amount [g/ container]	Urease inhibitor	Type of fertilization			
K	0, controll	0	no	-			
150	150	3.04	no	Spread on surface			
180	180	3.65	no	Spread on surface			
150i	150	3.04	yes	Spread on surface			
180i	180	3.65	yes	Spread on surface			
150b	150	3.04	no	Incorporation at 10 cm depth			
180b	180	3.65	no	Incorporation at 10 cm depth			

NH₃ emission measurement:

SECOND STEP- Microcosm experiment

Effect of urea fertilization on gaseous NH_3 losses in the case of:

- surface spreading
- usage of urease inhibitor

Treatment	Active Agent Nitrogen doses	Fertilizer amount [g/ mesocosm]	Urease inhibitor	Type of fertilization	
К	0. controll	0	no	_	
IX.	0, 001101011	9			
150	150	6.92	no	Spread on surface	
180	180	8.31	no	Spread on surface	
150i	150	6.92	yes	Spread on surface	
180i	180	8.31	yes	Spread on surface	

NH₃ emission measurement:

- 0. day before fertilization (2 weeks after sowing)
- I0 times after fertilization during 2 weeks
- the same methodologyafter the second fertilization event

REN

INSTITUTE FOR SOIL SCIENCES

THIRD STEP- Small plot experiment

Effect of urea fertilization on gaseous NH_3 losses in the case of:

- surface spreading
- usage of urease inhibitor

Treatment	Active Agent Nitrogen doses	Fertilizer amount [g/ mesocosm]	Urease inhibitor	Type of fertilization		
	[kg na -]					
К	0, controll	0	no	-		
150	150	6.92	no	Spread on surface		
180	180	8.31	no	Spread on surface		
150i	150	6.92	yes	Spread on surface		
180i	180	8.31	yes	Spread on surface		

NH₃ emission measurement:

- 0. day before fertilization
- It times after fertilization during 2 weeks

150 150	180	180	150
kg ha ^{.1} kg ha ⁻¹	kg ha ⁻¹ kg ha ⁻¹	kg ha ⁻¹ kg ha ⁻¹	kg ha ⁻¹ kg ha ⁻¹
150	180 <mark>180</mark>	180 180	150
kg ha ⁻¹ kg ha ⁻¹	kg ha ⁻¹ <mark>kg ha⁻¹</mark>	kg ha ⁻¹ kg ha ⁻¹	
180 180	150	150	180
kg ha ¹ kg ha ¹	kg ha ⁻¹ kg ha ⁻¹	kg ha ⁻¹ kg ha ⁻¹	kg ha ⁻¹ kg ha ⁻¹
180 kg ha ⁻¹ kg ha ⁻¹	150 kg ha ⁻¹ kg ha ⁻¹	150 150 kg ha ⁻¹ kg ha ⁻¹	180 180 kg ha ⁻¹ kg ha ⁻¹
0 kg ha ⁻¹	0 kg 0 kg ha ⁻¹ ha ⁻¹	0 kg ha ⁻¹ With	ilization at times inhibitor

Plot size: 5m x 8 m

NH₃ emission measurement only in one from the five replicates (with the red lines)

ON SANDY SOIL

- Highest emission in 180 and 180i treatment (with the highest doses)
- Lowest emission in the contoll (K) and the 150b and 180b treatment (where fertilizer was incorporated)
- We measured outstanding values (hotspots) in all treatments

- 1st day: no big differences between NH3 emission
- 2nd day: elevated emission (not in the controll and the incorporated treatments)
- 4th day: highest emission in 150 and 180 treatment
- 6th day: highest emission in 150i and 180i treatment

HUN

SOIL SCIENCES

Soil average NH ₃ emission (µg m ⁻² s ⁻¹)							
Treatment	Kontroll	150	180	150i	180i	150b	180b
Before fertilization	0,000± 0,000	_	_	_	-	_	-
After fertilization	0,016±	0,273±	0,616±	0,100±	0,355±	0,031±0,0	0,020±0,0
and irrigation	0,011°	0,474 ^{ab}	0,941ª	0,116 ^b	0,508 ^{ab}	34 ^c	09 ^c
After the second irrigation	0,007±	0,007±	0,035±	0,012±	0,023±	0,007±0,0	0,006±0,0
	0,004°	0,004 ^{bc}	0,039ª	0,005 ^{ab}	0,021ª	04 ^c	05°
The whole period	0,013±	0,184±	0,420±	0,071±	0,243±	0,023±0,0	0,016±0,0
	0,010 ^c	0,405 ^b	0,813ª	0,103 ^b	0,442 ^{ab}	30 ^c	10 ^c

- NH₃ losses can be most effectivley reduced with the incorporation of the urea fertilizer
- 30 kg ha⁻¹ inceasment in the active N agent significantly incresed NH_3 losses

ON CHERNOZEM SOIL

- Highest emission in 180 and 180i treatment (with the highest doses) –but not significant
- Emission values were two orders of magnitude smaller than in sandy soil
- Lowest emission in the contoll (K) and the 150b and 180b treatment (where fertilizer was incorporated)
- We measured outstanding values (hot-

spots) in all treatments IUN EATK REN INSTITUTE FOR SOIL SCIENCES

Kontroll
 150
 150b
 Mean soil water content

- No clear trends can be observed
- No higher emissions in the 180 or 180i treatments
- No lower emissions in the incorporated treatments
- Further laboratory experiments are needed on soils with different

physical and chemical parameters (in pH, CEC, humus content) to evaluate the differences

RESULTS – in mesocosm experiment

- Significantly higher emission in the 180 treatment
- 180i and 150i treatments have lower NH₃ losses than
 180 and 150 treatment, seperately (not significant)
- Lowest emission is in the controll treatment

RESULTS – in mesocosm experiment

Slower effect than in the laboratory:

- Emission increasment starts at the second day after fertilization (not in the first)
- Peaks in the 7th and the 9th day

RESULTS – in plot experiment

🗖 K 📕 150 🔲 180 📕 150i 📕 180i

- Highest emission in the 180 treatment
- Significant differences only betweeen the 180 and the control treatment
- Outsanding values in the 180 and 180i treatments
- Lowest emission is in the controll treatment

RESULTS – in plot experiment

- No differences before fertilization
- No significant differences between the treatments (except 180)
- 180i treatment has higher emission than 150i treatment (not significant)
 - NH₃ losses peaks only two week long
 - highest emissions were observed

after the 13th day

SOME OWN EXPERIENCE WITH PICARRO G2103

- > Sometimes the background NH_3 concentration seems too high (100-150ppb)
- NH₃ can stuck in the screw which is used to connect Picarro with the teflon tubes of the chamber
- In case of humid weather purification of the Picarro can be very slow and values turn back to the beckground concentration very slowly

THANK YOU FOR YOUR ATTENTION!

