Emission measurements with micrometeorological methods

PICARRO AMMONIA SUMMIT | JESPER NØRLEM KAMP 20 MARCH 2024 | TENURE TRACK RESEARCHER

Outline

- Outline
- Who am I?
- Introduction
- Inverse dispersion modelling
- Measuring emissions after slurry application
- Aerodynamic gradient method after slurry application

Who am I?

Jesper Nørlem Kamp Tenure track researcher jk@bce.au.dk

Section of Environmental Engineering Department of Biological and Chemical Engineering Aarhus University

M.Sc. Chemical Engineer, 2016

Ph.D. Environmental Engineering, 2021

Development and application of technologies for measuring gas emissions from agriculture

Emission measurements from agriculture

PICARRO AMMONIA SUMMIT JESPER NØRLEM KAMP 20 MARCH 2024 TENURE TRACK RESEARCHER

Emissions

Different requirements for analyzer

- Emission source
- Emission strength
- Emission method

Possibilities with the available equipment and methods

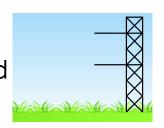
PICARRO AMMONIA SUMMIT | JESPER NØRLEM KAMP 20 MARCH 2024 | TENURE TRACK RESEARCHER

Emission rates

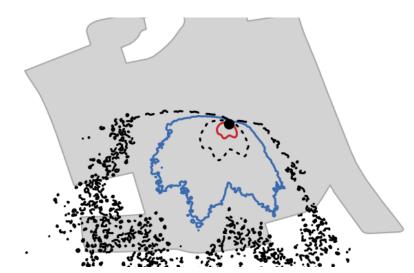
upwind trajectories

Wind

Inverse Dispersion model


touchdown (x_0, y_0, w_0)

Flesch et al., 2004, Vol. 43, Journal of Applied Meteorology


Backward Lagrangian stochastic (bLS)model

Source

Micrometeorological method Aerodynamic Gradient Method

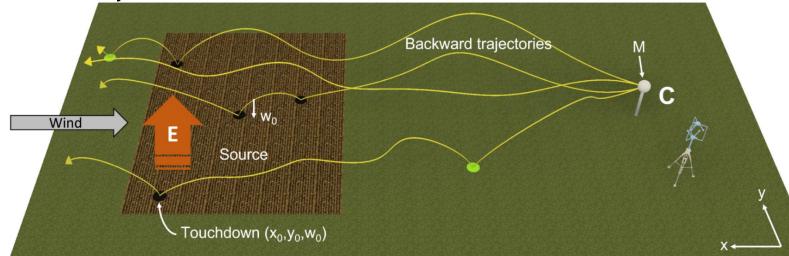
Footprint correction needed for specific source estimate

Kamp et al., 2021, 12, 102, Atmosphere

PICARRO AMMONIA SUMMIT 20 MARCH 2024

м

JESPER NØRLEM KAMP TENURE TRACK RESEARCHER


Inverse Dispersion Modelleling

Backward Lagrangian Stochastic (bLS)

- Provides non-invasive source specific emissions estimates
- Determine emission rates from a defined area in 10-60 min intervals
- Possible to use complex geometry
- Concentration measurements (line or point)

Inputs:

- Concentrations (up- and downwind)
- Wind statistics
- Source geometry
- Sensor position

Bühler (2022)

Possibilities with bLS

Continuous emission measurements from sources with complex geometry

Tanks

Buildings

Major limitations:

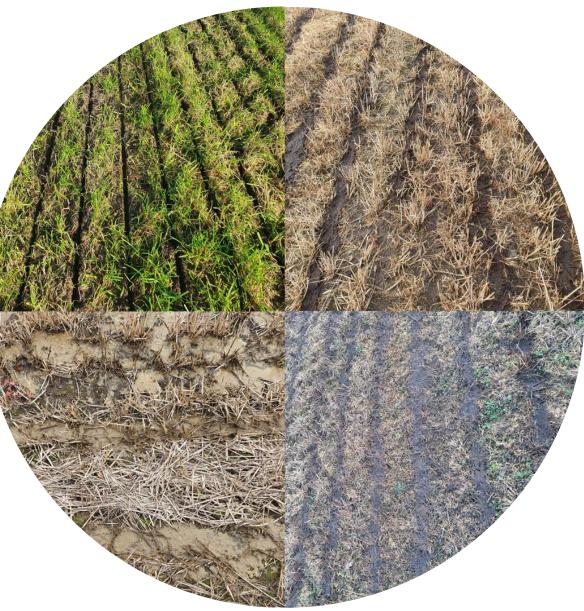
- 1. Computational time
- 2. Dispersion assumptions must be fulfilled
- 3. Concentration difference

Example bLS: Measurement methods

PICARRO AMMONIA SUMMIT | JESPER NØRLEM KAMP 20 MARCH 2024 | TENURE TRACK RESEARCHER

Scope

Evaluate differences related to measurement methods


• Effect of local soil, weather, application method, applicator, etc. eliminated

Methods

- Time averaged and spot
- Absolute and relative
- On site and off site

Manuscript in review:

Kamp et al., Agricultural and Forest Meteorology

Measurement methods

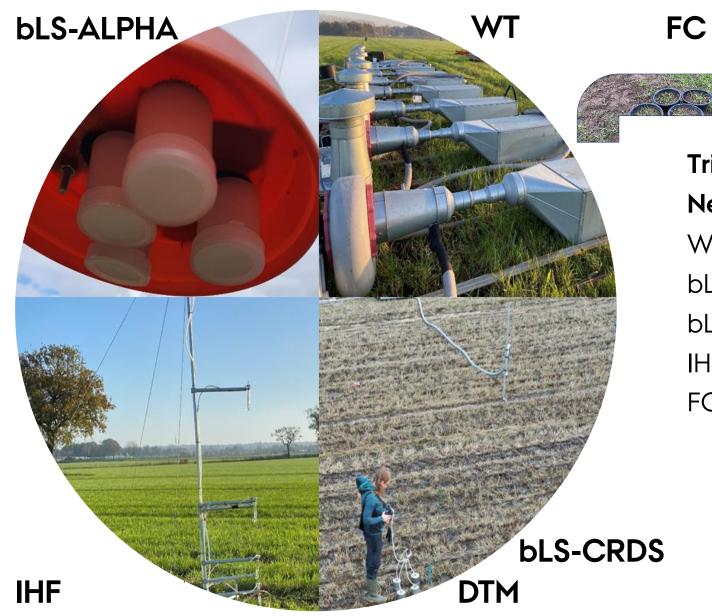
Aarhus University (AU)	Wageningen University & Research (WUR)	Johann Heinrich von Thünen Institute (Thünen)
Wind tunnels with Cavity Ring-Down Spectroscopy WT	Flux Chambers with Impingers FC	Dräger Tube Method DTM
bLS with Cavity Ring- Down Spectroscopy bLS-CRDS	bLS with Impingers bLS-Impingers	bLS with Passive ALPHA Samplers bLS-ALPHA
	Integrated Horizontal Flux with Impingers IHF	

Measurement methods

	Aarhus University (AU)	Wageningen University & Research (WUR)	Johann Heinrich von Thünen Institute (Thünen)
Enclosure methods	Wind tunnels with Cavity Ring-Down Spectroscopy WT	Flux Chambers with Impingers FC	Dräger Tube Method DTM
	bLS with Cavity Ring- Down Spectroscopy bLS-CRDS	bLS with Impingers bLS-Impingers	bLS with Passive ALPHA Samplers bLS-ALPHA
		Integrated Horizontal Flux with Impingers IHF	

Micrometeorological methods

Measurement methods


	Aarhus University (AU)	Wageningen University & Research (WUR)	Johann Heinrich von Thünen Institute (Thünen)	
High time resolution	Wind tunnels with Cavity Ring-Down Spectroscopy WT	Flux Chambers with Impingers FC	Dräger Tube Method DTM	Spot samples in time
	bLS with Cavity Ring- Down Spectroscopy bLS-CRDS	bLS with Impingers bLS-Impingers	bLS with Passive ALPHA Samplers bLS-ALPHA	
		Integrated Horizontal Flux with Impingers I HF		

Integrating over time

Measurements

Trial 1 Denmark: WT bLS-CRDS bLS-ALPHA DTM

Trial 2 Netherlands: WT bLS-CRDS bLS-Impinger IHF FC

Ammonia flux

Unpublished data removed.

Cumulative loss (% of applied TAN)

Unpublished data removed.

Conclusions

Unpublished data removed.

The aerodynamic gradient method

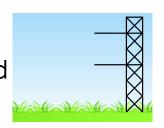
PICARRO AMMONIA SUMMIT | JESPER NØRLEM KAMP 20 MARCH 2024 | TENURE TRACK RESEARCHER

Emission rates

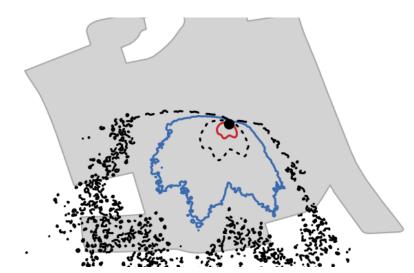
upwind trajectories

Wind

Inverse Dispersion model


touchdown (x_0, y_0, w_0)

Flesch et al., 2004, Vol. 43, Journal of Applied Meteorology


Backward Lagrangian stochastic (bLS)model

Source

Micrometeorological method Aerodynamic Gradient Method

Footprint correction needed for specific source estimate

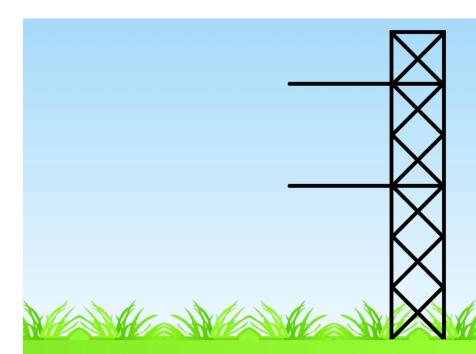
Kamp et al., 2021, 12, 102, Atmosphere

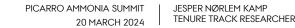
PICARRO AMMONIA SUMMIT 20 MARCH 2024

м

JESPER NØRLEM KAMP TENURE TRACK RESEARCHER

Aerodynamic gradient method


Based on Fick's law:

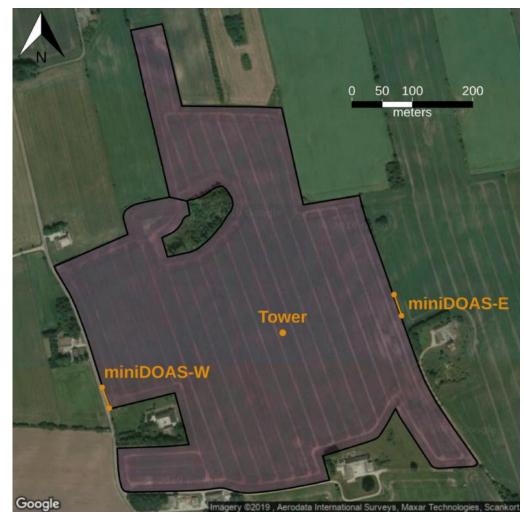

$$F = -K_c \frac{\partial c}{\partial z}$$

Parameterized based on Monin-Obukhov similarity theory:

$$F = -K_c \frac{\partial c}{\partial z} = -\frac{u_* k (c_2 - c_1)}{\ln\left(\frac{z_2}{z_1}\right) - \psi_{c,2} + \psi_{c,1}}$$

Wind statistics

AGM flux after field application of slurry


Continuous measurements at two heights Two instruments?

- Expensive
- Systematic differences?
- Potential bias?

Discontinuous or continuous measurements?

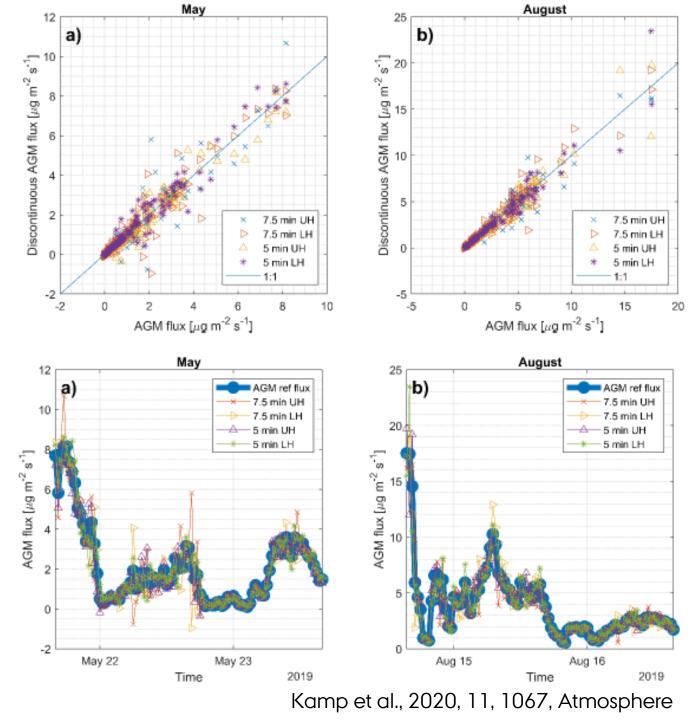
Tested in two field trial on 26 ha field

• Two G2103

PICARRO AMMONIA SUMMIT 20 MARCH 2024

JESPER NØRLEM KAMP TENURE TRACK RESEARCHER Kamp et al., 2020, 11, 1067, Atmosphere

AGM flux


Relative difference < 7% for half-hour intervals

Relative difference in total TAN < 4%.

Possible to use a single instrument Single analyzer for average estimates (mean flux and total loss of TAN)

Large deviations for some single intervals

Footprint model for specific area needed

